Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient
نویسندگان
چکیده
Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems.
منابع مشابه
Plasticity in Meristem Allocation as an Adaptive Strategy of a Desert Shrub under Contrasting Environments
The pattern of resource allocation to reproduction vs. vegetative growth is a core component of a plant's life-history strategy. Plants can modify their biomass allocation patterns to adapt to contrasting environments. Meristems can have alternative fates to commit to vegetative growth, reproduction, or remaining inactive (dormant or senescent/dead). However, knowledge about whether meristem fa...
متن کاملRelationships between Species Diversity and Biomass in Mountainous Habitats in Zagros Rangeland (Case Study: Baneh, Kurdistan, Iran)
Species diversity, richness and biomasses (aboveground biomass) and their relationships are the key variables of ecosystems. This study was conducted to determine the relationship of Species Diversity (SD) and Species Richness (SR) with Above-Ground Biomass (AGB) at a local scale at 5 different habitats (shrubland, forbland, grassland, shrub-forbland and forb-shrubland) in Zagros mountains in w...
متن کاملSpecies Composition Interacts with Fertilizer to Control Long-term Change in Tundra Productivity
Fifteen years of N and P fertilizer addition to an Alaskan moist tundra increased aboveground biomass and primary production by 2.5 times. Species composition of the fertilized vegetation also changed dramatically, from a mix of graminoid, evergreen, deciduous, and moss species to strong dominance by a single, deciduous shrub species, Betula nana. Analysis of these simultaneous changes allows i...
متن کاملEffects of biophysical constraints, climate and phylogeny on forest shrub allometries along an altitudinal gradient in Northeast China
Whether there is a general allometry law across plant species with different sizes and under different environment has long been controversial and shrubs are particularly useful to examine these questions. Here we sampled 939 individuals from 50 forest shrub species along a large altitudinal gradient. We tested several allometry models with four relationships simultaneously (between stem diamet...
متن کاملCompetition and Salt-Marsh Plant Zonation: Stress Tolerators May Be Dominant Competitors
Although a great deal of research has focused on the effects of nutrient supply on plant competition, few studies have explored how these processes interact with nonresource factors to determine community-level patterns. This study examined how resource competition interacts with physical stress to structure salt-marsh plant communities across a natural gradient in tidal stress. First, nutrient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016